If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-25x-50=0
a = 5; b = -25; c = -50;
Δ = b2-4ac
Δ = -252-4·5·(-50)
Δ = 1625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1625}=\sqrt{25*65}=\sqrt{25}*\sqrt{65}=5\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-5\sqrt{65}}{2*5}=\frac{25-5\sqrt{65}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+5\sqrt{65}}{2*5}=\frac{25+5\sqrt{65}}{10} $
| 0=-2x+(-10)+3x | | V=0.9r+30 | | 8x-17=3x-1 | | x+35=x-45 | | 4x+(-3x)+6=21 | | 4-3x=16x+1 | | -7=-3r-4r | | 5r^2-6r-56=0 | | (1/2)x2+12=4 | | 8x/15=-14 | | 2d+3.9=9.5 | | -2a+(-6)+4a=18 | | 0.5x-(-x+3)=-5 | | 2(4x-2)+5x=-18 | | 1/3(c-2)=7/9 | | m-4=3-6m | | -24=2+(-10x)+4 | | -(x+2)+5=2x+12 | | 5(2000/y)+2y=2000 | | T+3=11-t | | 3t+(-2)+t+(-5t)=-1 | | 40-3x=360 | | (11+10x)(11-10x)=121 | | 4(2+x)-3=20-x | | 14+5y=60-4y | | v/3-9=30 | | x/7=1=4 | | ((x^2)/(33))-((33)/(x^2))=0 | | x÷-4-3=7 | | -14x+2=-4 | | -7=1+x-6 | | v/2=11=16 |